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A model of supersonic flow past blunt axisymmetric 
bodies, with application to Chester’s solution 
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SUMMARY 
A simple approximate model is set forth for the flow field 

between the nose of a blunt body of revolution and its detached 
shock wave. The model tends to explain the poor convergence 
of Chester’s solution, which is based on an improvement of the 
Newtonian approximation. It suggests a modification of his series 
for the body shape which appears to improve its convergence 
considerably. 

1. INTRODUCTION 
Chester (1956) and Freeman (1956) have recently advanced in this 

journal an ingenious attack on the problem of supersonic flow past a blunt 
body. Their point of departure 
is the ‘ Newtonian-plus-centrifugal ’ solution, which becomes exact as the 
free-stream Mach number M approaches infinity and the adiabatic index y 
approaches unity. After modifying this basic solution to be valid near the 
body, Chester and Freeman improve upon it by successive approximations, 
the key to their success being the adoption of von Mises’ transformation, 
in which the stream function is taken as one of the independent variables. 
The result of Chester (who has carried the approximation several steps 
further than Freeman for a perfect gas with constant specific heats) is a 
double series expansion in 6 = (y  - l)/(y + 1) and 

Unfortunately, the series for the flow variables of interest appear to 
converge poorly and, surprisingly, less well for axisymmetric than plane 
flow. For example, for axisymmetric flow of a perfect gas with y = 7/5 
at M = co past whatever body it is that supports a parabolic detached 
shock wave, Chester’s series for the stand-off distance A of the shock wave, 
in terms of its nose radius Rs, is 

(See also Lighthill 1957, $3.5 et seq.) 

A/Rs = Q(1- 0.6667 + 0.4333 - 0.3062 + ...). (1) 

Although the expansion parameter 6 is here only 1/6, this series converges 
so slowly as to be of little practical value. (Chester has used his series only 
out to 6 = 1/10, and then attempted to extrapolate to such ‘large’ values 
as 1/6.) 

The question naturally arises whether this discouraging behaviour is 
symptomatic of some basic defect in the approximation, or simply indicates 
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that the series has an unduly small radius of convergence (if it in fact 
converges). The present note aims to suggest that the latter is the case, 
and that by appeal to a simple approximate model of the flow field the series 
for the shape of the body can be recast in a form that appears to converge 
much more rapidly. 

2. A SIMPLE MODEL OF THE FLOW FIELD 

Consider axisymmetric flow of a perfect gas with constant y behind 
a prescribed shock wave. For simplicity we take the shock wave to be a 
parabola (which is the only case considered in detail by Chester), but other 
shapes could be treated similarly. According to the Cauchy-Kowalewski 
theorem, the flow field is analytic in some region downstream of the shock 
wave, and there is no reason to doubt that this region extends to the surface 
of the body. One can therefore attempt to expand the flow field in Taylor 
series starting from the shock wave. I t  is convenient to work with Stokes's 
stream function i,h and parabolic coordinates ( 5 , ~ )  which are normalized 
such that the shock wave is described by 7 = 1. 

On the downstream face of the shock wave, the stream function has the 
free-stream value, its first derivatives are given by the Rankine-Hugoniot 
shock relations, and its second derivatives can be found by substituting 
into the equations of motion. The present model consists of the resulting 
first three terms of the Taylor expansion starting from the shock wave: 

( y  - 1)M2 - 2(2 + M2) + # 1 (Y+l)MA 
P = 2 -  A 2A 

where A =  2(1+52)+(~-1)M2. (2 b) 
Even this approximation is rather unwieldy, but at M = co it simplifies 

to 

# yf1(1-7)+[- + 1 + 2 L ] ( 1 - q ) 2 .  (3) . ? = 2 -  Y-1 y-1)2 2 (y-1)2 1+(2 

In the Newtonian limit, y + 1 (and 17 + l), this reduces further to 

On the axis (5 = 0) the point at which this last expression vanishes (corre- 
sponding to the nose of the body) lies at (1 -7) = J-(y- l), which is just the 
result of the first approximation of Chester and Freeman. It is mainly 
this attribute that qualifies the model as a useful one. Off the axis (4) 
cannot vanish, which suggests that the model will prove less faithful away 
from the nose of the body. 
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It  should be remarked that the idea of expanding the flow field in Taylor 
series from an assumed shock wave is by no means new, but has been followed 
by a number of workers with uniformly poor results. The innovations in 
the present model are, first, that the natural coordinates associated with 
the shock wave are employed, and, second, that the Taylor series is terminated 
with the parabolic approximation to the stream function ; and both of these 
are essential. Previous investigators, of whom the most assiduous has been 
Cabannes (1951, 1956)) all carried out double Taylor series expansions in 
Cartesian coordinates. Aside from the inferiority of a double series to the 
present single expansion, this yields series whose first few terms approach 
the true result much more slowly than the present series in parabolic 
coordinates. This is illustrated in figure 1 for a parabolic shock wave at 
M = 2 (with y = 7/5), for which Cabannes (1956) has computed seven terms 
of the double Taylor series. 
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Figure 1. Taylor series expansions for stream funcrion on axis of symmetry behind 
parabolic shock wave at M =  2, y = 7/5. (a)  Cartesian coordinates; (b)  Parabolic 
coordinates. 

Figure l ( b )  also illustrates the second point that, even in the natural 
coordinates, adding further terms to the Taylor series worsens rather than 
improves the approximation. The reason for this is that analytical continua- 
tion of the flow field upstream through the detached shock wave leads to 
a limiting line, or envelope of characteristics, as sketched in figure 2. The 
continued flow field has a square-root behaviour there. Since the Taylor 
series represents this analytical continuation, the limiting line determines 
its radius of convergence. On the axis, the limiting line is about as far 
ahead of the shock wave as the body is behind it, so that the convergence is 
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marginal ; and in the example of figure 1 it is actually closer, so that the 
series diverges at the body. (The divergence can be ameliorated by applying 
the transformation of Shanks (1955).) Off the axis the limiting line is 
even closer, relative to the distance of the body, so that the convergence 
deteriorates further. 
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Figure 2. Schematic diagram showing analytical continuation of flow upstream 
through shock wave. 

Poor convergence, or even divergence, is not a fatal flaw, however; 
though it is for this reason that the truncated series is regarded as a model 
rather than a systematic approximation. The variation of the stream function 
is actually very nearly parabolic, so that (somewhat as with asymptotic series) 
the first three terms of the Taylor series provide a close approximation 
near the axis. 

3. APPLICATION TO CHESTER’S SOLUTION 

3.1. Body shape at injnite Mach number 

stream function (3) to vanish determines the body according to 
Consider first the case of infinite Mach number. Requiring the model 

( 5 )  
6 

1 + [36( 1 - 6) - 2( 1 - S 2 ) f 2 / (  1 + 52)]1’2 ’ (1 - 7)model = 

where 6 = ( y  - l)/(y + 1). For comparison with Chester’s solution, we 
transform to cylindrical polar coordinates in which the shock wave is 
described by x = 3r2, which means that x = t(l +[2-72) and r = 5.1, 
and then expand for small 6. Then (with fractions unreduced to facilitate 
comparison) the body is described by 

1 343 - 2362 -i- 12 a22/(96/3) + ... , (6 )  
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whereas Chester’s result, of which the leading term was first given by 
Hayes (1955), is 

11173 

+ 1 26 463 
10 168 1 - 4(86/3) + - S - - 64(8S/3) + ... 

19 47 + - r2 1 + - 6 - - 62/(8S/3) + - S2 - 2 ’ [  6 15 840 

-- 2593 S22/(86/3) + ...I. (7) 
126 

The agreement is remarkable for the terms independent of r ,  though (as 
anticipated) less satisfactory for those in r2. The model series converges 
for 6 smaller than 3/9, which suggests that Chester’s series will converge 
for S less than 3/8, corresponding to y less than l l /S ,  a value not attained 
in reality. However, the convergence of both model and prototype is 
unsatisfactory at 6 = 1/6, corresponding to y = 7/5. In the model the 
poor convergence results from expansion of [1+ (36)1’2]-1 by the binomial 
theorem, which suggests that the convergence of Chester’s series might be 
considerably accelerated by recasting it as a series for (1 - ~) - l .  Doing so 
yields on the axis (e  = 0) 

1 13 187 
(1-~)-1 = S-f1+2/(83/3)- ,,S+ mS2/(88/3)+ ... . (8a) 

For 6 = 1/6 this gives 

which appears to be a great improvement over the result of the original 
series for the related quantity A/R,  given in equation (1). 

(1 - T)-’= 6( 1 + 0.6667 - 0.0722 + 0.0247 + ...), (8 b) 

3.2. Body shape at high Mach number 
For 

simplicity, we restrict the model to the axis, where it is most faithful. Then 
from (2a) it locates the nose of the body at 

Consider now Chester’s general case of high Mach number. 

(1 - 7)model = [2 + (y - 1)M2][(y + 1)M2 + {6(y - l)M4 + 
+ 2(y + 5)M2 + 4}1/2]-1. (9 a) 

In  terms of Chester’s parameters 

this is 
6 = ( y -  l ) / ( ~ +  l), d = 6 + i W 2 ,  

(1 - q)model = (S f MP2 - MP2S){ 1 + [( 1 - 6)(36 + 4AP4 - 3M-46)]1’2}-1 (9 b) 
or 

(1 - q)model = d(1- M-’ + Mp4/d){l + [(l - d + &F2)(3d- 3M-2 + 
+ 4M-4 - 3M4d + 3M-6]1/2}-1. (9 C) 

Now the last form can be expanded in a series containing only positive 
powers of d1I2 and M-2, as in Chester’s solution, only under the assumption 
that This 
minor discrepancy probably indicates a certain lack of fidelity in the present 

= O(d2), though Chester assumes merely that M-2 < d. 
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model. T o  play safe, however, we shall treat Chester’s solution only under 
the additional assumption that = O(d2). For y = 715, this restricts M 
to values greater than perhaps 4 or 5.  

As before, the model suggests recasting Chester’s series as an approxima- 
tion for (1 - q)-l. The result, including now terms in t2, is 

3 

.1429 
*1323 

a5934 
*6014 

.2408 

.2200 

-- 

-- 

-- 

- 5 0400 dJ( ?) +...>I . (10) 

4 

.1242 
-1174 

.6450 

.6407 

.1926 

.1832 

(Note that on the axis the solution to this degree of approximation does not 
depend upon Mexplicitly, but only in so far as it appears in d.) The apparent 
convergence of the terms in t2, though again not as rapid as that of the terms 
independent of t ,  is a great improvement over that of the original series, 
and probably adequate for practical purposes. 

For y = 715, this modified series (10) leads to ratios of stand-off distance A,  
initial shock-wave radius Rs, and body nose radius R,, which are compared 
in table 1 with the results of the model. 

1 .5  

.2405 
-2109 

~3608 
.3966 

.6667 

.5 3 17 

2 
-- 

.1890 

.1693 
-- 

-4766 
.SO33 

.3966 

.3364 

-- 

M 

- A eqn.(lO) 
R, model 

- R, eqn.( 10) 
R, model 

- A eqn.(lO) 
R,  model 

-______ 

_ _ ~ _ _  

_ . _ _ _ ~  

1 *25 

.2815 

.2443 

.2783 

.3080 

1.0112 
-7932 

.6715 -6868 *7025 -7101 

.6594 I -6695 I *6796 I -6842 
I- 1-1- 

co 

.0976 
*0962 

.7238 

.6923 

.1349 
-1389 

__ 

- 

- 
Table 1. 

For M =  00 an accurate numerical solution of the full equations has 
been found as the first part of a current programme of calculating the flow 
field behindafamily of detached shock waves. The results are AIR, = 0.0988 
R,/Rs = 0.726, and AIR, = 0.1360. Hence the modified series predicts 
the ratio of stand-off distance to body radius to within a fraction of 1%, 
and even the model is only 2% off at M = co. The numerical solution also 
indicates that the axisymmetric body that supports a parabolic shock wave 
at M = co is itself almost exactly parabolic (whereas in plane flow it is 
exceedingly close to circular). 

The tabulated values of stand-off distance are compared in figure 3 
with a number of measurements on spheres in air under conditions such that 
the adiabatic exponent is close to 7/5. Schlieren photographs show that 
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for spheres flying at Mach numbers between 2 and 7 the detached shock 
wave is nearly parabolic over the region that determines the stand-off 
distance, so that the comparison is justified. At lower Mach numbers the 
shock wave on a sphere departs significantly from a parabola, and the 
assumptions of Chester’s theory have also been greatly exceeded, so that the 
agreement shown in figure 3 is undoubtedly coincidental, (No values are 
shown for Chester’s original series, since it converges so poorly that he did 
not himself suggest using it at y = 715.) 
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Figure 3. Stand-off distance of shock wave from sphere. 
M 

3.3. Pressure distribution 
Chester’s series for the pressure at the surface of the body also suffers 

from poor convergence (except at the stagnation point). Thus at M = co 
it gives, in units of po V2 

4 + -6- 253 -862/(86/3)+ 32 2 5 0 5 0 0 7 ~ ~ 1 .  13 860 (11) 
3 63 9 

The corresponding result for the model stream function is found, using the 
Bernoulli equation and the condition of constant entropy along streamlines, 
to be 

-82 . (12) 747 16 1 
The agreement is fair. In particular, the model confirms that the last 
coefficient is enormous, though Chester’s is still greater by a factor of four. 

F.M. 2 L  
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Unfortunately, the model does not in this case lead to a useful modification 
of Chester’s solution. It actually suggests that his series should be used 
to calculate the quantity q4p2(u2+v2), and that the pressure then be found 
from the Bernoulli and entropy relations ; but working back from Chester’s 
solution for p gives a series for that quantity whose convergence is not 
appreciably improved. 

In the case of plane flow, the convergence of Chester’s series is nearly 
adequate. It would nevertheless be of interest to construct a model, if only 
to explain the source of the logarithmic terms. (Successively higher powers 
of logarithms in perturbation series may be the asymptotic representation 
of Bessel functions, inverse hyperbolic functions, small fractional powers, 
etc.). However, the author has been unable to devise a useful model, or 
otherwise to discover an appropriate transformation of the series. 
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